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Small-angle neutron scattering from polydisperse molten polymers is considered. It is shown that if the 
sample consists of a blend of protonated and deuterated molecules, in which both components have the same 
molecular mass distribution, then the scattered intensity is just a linear combination of the single-chain 
scattering functions for each degree of polymerization. With this result, a moments approach giving the 
corrections to small-angle scattering data for polydisperse samples in terms of the sample mass averages, Mn, 
M,,  Mz etc. is presented. The method has the advantage that the exact nature of the molecular mass 
distribution need not be known, and that the formulae are not restricted to asymptotic regions of the 
spectrum. The procedure is illustrated for Gaussian linear and star-branched polymers, and applied to some 
synthetic and real data. Validity of the derived formulae is restricted to samples with small degree of 
polydispersity, typically Mw/Mn< 1.3. In addition, several exact results relevant to polydisperse star 
molecules are derived. 

(Keywords: polydispersity; small-angle scattering; neutron scattering; scattering function; molten polymers; Gaussian 
macmmolecules; star polymers) 

I N T R O D U C T I O N  combine in the blend of protonated and deuterated 

From the small-angle part  of the elastic scattering polymer used for the neutron scattering experiment? 
Second, the only knowledge available of the spectrum of a system of non-interacting particles a 

measure of the size of the scatterers can be obtained in the polydispersity was contained in the first three molecular 
form of their z-average, mean square radius of gyration, mass averages, Mn, Mw and Mz, estimated from size 
(S2>z-~. Much more information is available, though, if exclusion chromatography.  The shape of the distribution 
the spectrum is continued to larger values of the was unknown. 
wavevector transfer, Q, where correlations between units This paper  discusses these two problems. In the first 
wi th in the in te r iorof thesca t te re ra reprobed .  A direct test part  it is shown that, provided the molecular mass 
can be applied to a theoretical description for the distributions of the labelled and unlabelled components 
molecular conformation by comparing the experimental are the same, the scattering function for the blend is just 
scattering data with the static structure factor (scattering the mean of the mass-dependent scattering functions. 
function), S(Q). Then, an approximate formula for the scattering function 

of a polydisperse system is derived by a moments  method, In a recent neutron scattering study of molten star- 
branched polymers 1 the objective was to test the validity in which the molecular mass distribution enters only 
of the Gaussian model for such molecules and to extract through the mass averages Mn, Mw, Mz, etc. By means of 
the mean square radius of gyration on the basis of this example, the formula is then applied to the case of 
model. It  became of interest to calculate what effect the Gaussian linear and star-branched polymers and the 
small variation in the molecular mass of the molecules limitations of the treatment are discussed. Finally, the 
had upon the full S(Q) calculated for a monodisperse results for Gaussian stars are used to analyse some 
sample, and to produce formulae for fitting to the entire Q experimental data, and various features of the results are 
range of the experimental data. interpreted with the help of a numerical example. 

Two problems arose. First, how do the scattering 
functions for the individual molecules of different masses S C A T T E R I N G  F R O M  M O L T E N  BLENDS 

* Present address: Department of Physics, University of Warwick, The sample is taken to be comprised of a blend of 
Coventry CV47AL, UK protonated and deuterated versions of the same polymer. 
-t It should be noted that two averaging processes have taken place in The macroscopic, coherent sample cross-section 
(S2)z. The term 'mean square' refers to the average of S 2 over all 
possible configurations of the molecule, and is indicated in this paper by measured in a small-angle neutron scattering experiment 
angular brackets. For polydisperse samples a quantity may also be can be written in terms of the fluctuations in scattering 
averaged over the mass distribution. This will be denoted by a bar, e .g .  length density 2. In an incompressible melt the scattering 
N 2 , unless the average is weighted by some power of N when an arises from the difference between the scattering lengths of 
alphabetic subscript will be used in the conventional way. Thus, the the protonated and deuterated chains. If  d and h are the 
notation Y is equivalent to Yn. The notation (S2(N)) will be employed 
to indicate the mean square radios of gyration ofa monodisperse sample respective scattering lengths for a deuterated and 
with degree of polymerization N. protonated monomer ,  and fffd(Q,N) is the fluctuation in 
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deuterated monomer density in Q-space for a chain of N For all that follows the scattering system will be taken to 
monomers, then the cross-section may be written: be isotropic, so that Q can be replaced by Q. It is also 

convenient to define a constant A such that: 
dE 1 

(d -h)  z 1 d Z  m s d--~ = N N' -7"V~(Q)=z-7-.S(Q) (8) 
A OL4 N1 n 

N ~, With this definition all bulk sample properties and 
parameters dependent upon the nature of the radiation 

where XN is the number of chains which have degree of source are contained in A and are decoupled from the 
polymerization N, fN is the fraction of these which are molecular mass constants. 
deuterated, and Ss and SNN' are the intra- and inter-chain The method proceeds by expanding S(Q,N) in a Taylor 
pair correlation functions, given by: series about a fixed degree of polymerization N O: 

N N 
fA~V~k 

SN= ~. ~ (exp{iQ-(Ri-Rj)}> (2) S(Q,N)=S(Q,No)+k~I~S(k)(Q,No) (9) 
same chain = " 

N N' where 

SNN'= 2 Z ( e x p { i Q . ( R , - -  R j ) } >  (3) A N = N _ N o  
i j 

different chains 

Inserting this series into the integral in equation (7) yields: 
In terms of SN and SNN' the incompressibility condition is: 

oo AN k 
~.XNS N + ~ X N X N ,  SNN, = 0 (4) S(Q) = S(Q,No) + k~-~-. S(k)(Q,No) (10) 
N NN' = " 

If it is assumed that the labelled and unlabelled samples The averages can be written as moments of x(N) or, by 
have the same molecular mass distribution, i.e.fN =fN' =f, means of equations (6), in terms of mass averages. For a 
then it follows from equations (1) and (4) that: narrow number distribution only the first few terms need 

be retained. The sample cross section, from equation (8), 

dE = (d - h)2fll - f  XNSN (5) 
df~ 1 d E  m 2 

S(Q,No) + m(1 - Mo/ Mn)S'(Q,No) 
Hence, it is proved that with these conditions the total A df~ 
scattering function is just a linear combination of the 

1 
- 2 M o  + Mo/Mn)S (Q,No) single-chain structure factors. This result may also be +--tMw 2 ,, 

deduced from a calculation by means of the random 2.)" 
phase approximation 3, but the present derivation is much 
simpler and does not have recourse to the assumption of 1 1 2 3 ,~t 

ideal chains required by the RPA. For instance, equation + ~ - - ( M z M w -  3M*Mo + 3 M 0 -  M°/Mn)S (Q,No) 
. ) ! m  

(5) is as equally valid for oriented as for unperturbed (11) 
chains. 

The form of S(Q,N) calculated from the proposed model is 
MOMENTS METHOD now used to evaluate as many derivatives as there are 
It will be convenient in this paper to convert sums over mass averages known. In the applications discussed in 
numbers of monomers into integrals, and to express the this work it will be assumed that only Mn, Mw and Mz are 
polydispersity in terms of the differential number known, and so formulae will be derived from equation 
distribution, x(N). The various mass averages in common (11). 
use arise from x(N) according to: 

Mn=mN APPLICATION OF FORMULA 

m 2 _ 
Mw = Mnn N2 (6) Gaussian, linear polymers 

In the Gaussian model of a polymer chain the 
separation of two units i and j is assumed to follow a 

maN 3 Gaussian distribution of variance: 
M z 

MwMn <r2> =6Kli-j] (12) 

where m is the mass of one monomer. The mean scattering 
function, from equation (5), is expressed as: For  linear polymers of N monomers this results in the 

Debye scattering function4: 

S(Q) = 1- S(Q,N)x(N)dN (7) 2N 2 
S(O,N)=---w-(e- + u -  1) (13) J 

0 
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where linear chains at a single point: the star point. The ith arm 
has ni units, so the total number of units in the star is: 

u = Q2KN = Q2(S2(N)) 
f 

Evaluating the derivatives at N = N o, and inserting into N =  ~ nl (19) 
equation (11) gives: ~= 1 

1 dE 2M g 1 ,0 It will be assumed that the linear chains which became the 
d -Q-  ~ ~00 (e- + u 0 - 1) arms can all be described by one number distribution 

x(n~). The molecular mass averages of the arms will be 
denoted by M], M~,, M~ etc., whilst those of the star as a 

_Mo/M~_I(I__ _e- ,0)  whole will be M~, M~w, M' z. +2Mo(1 
u o The Gaussian model for a star supposes that equation 

(12) for the mean square separation of two units is valid 
+ (M, - 2M o + M2/M,)e- .o regardless of whether i andj  lie on the same or on different 

arms. The scattering function for such a star isS: 
-~(MzMw/Mo - 3M, + 3M e -M2/Mn)uo e- .o 

2 V_I 
(14) S(Q'{ni } )=O~lg ~ - ' ~ L - ,  [ y j - ( 1 -  e-',)] + 

In the limit u o < 1 equation (14) becomes: 

~ ~ ( 1 - e - ' , ) ( 1 - e - ' 9  (20) 
1 dE M 1 1 2 $2 

 Tfi- w( < (15) j:x 
where 

This is the correct universal form for small Q, since for 
linear polymers YJ = Q2Knj 

( S 2 ) z  = (S2(Mz))= KMz/m (16) In this equation the first sum corresponds to intra-arm 
correlations whilst the double sum arises from inter-arm 

It should be noted that it requires three derivative terms correlations. If all arms are identical, then equation (20) 
in the Taylor  expansion, equation (11), to obtain this reduces to the Benoit equation for a uniform star: 
result. 

For  u o >> 1 the correct limiting form: 
- 2 N 2 [ e - r + y - l + ~ f ~ ( 1 - e r ) 2  1 (21) 

1dE, 2 ~ 1  1 ) (17) 
A df~ - KQ2~, Q2(S2)n where 

is also obtained, but only one derivative term is needed for Y = Q 2KN/ f  
this result. 

Up to this point there has been no discussion about If the Benoit equation together with its derivatives is 
what value to choose for M 0. Some guidance in its choice simply inserted into the moments expansion, equation 
is provided by the limiting forms of the polydisperse (11), then this sort of polydispersity corresponds to an 
scattering function, equations (15) and (17). As Q ensemble of molecules in which all the stars are self- 
becomes very large the dependence of dY./dQ upon the similar, i.e. of various sizes but the same shape. In practice 
mass of the sample diminishes and eventually the this situation may occur if monodisperse arms are grafted 
scattering functions of all Gaussian polymers coincide, onto a finite-size, polydisperse centre, or in forming a 
regardless of their mass. Hence, the Debye function with star-branched block copolymer, but in such cases it is 
M = M~ coincides with the polydisperse function both at unlikely that the centre will have the same scattering 
Q = 0  [equation (15)] and as Q tends to infinity. The length density/refractive index as the arms, or even that 
general choice M 0 = M  w seems appropriate, therefore, Gaussian statistics will still be valid. 
since S(Q,No) then represents that Debye function which A better description of the polydispersity of star- 
fits the polydisperse curve at the extremes. This choice is branched polymers is one in which the arms are of 
also useful because Mw is often the most accurately independently varying lengths and attached at a point. 
known of the mass averages, and because the scattering The probability distribution function for the number of 
function simplifies slightly: units in the whole chain is then an f-fold convolution of 

that for an arm. For  this distribution it is no longer true 
1 dE M 2 1 1 3 2 that the mass averages for the star (M~,, M'w, M'z etc.) are -~_ [(3Uw+U,+2Uw+2)e-"w-2] 
A dt~ M. Uw 2 obtained from those of an arm (Man, M~,, M a) by simply 

multiplying by f,  The correct relationships are given in 

+Mw.2_(Uw +2)e_=w ] [  Mz _,~ the appendix. 
uw -~ -Uwe  (18) Before proceeding on to the approximate scattering 

function in terms of these mass averages it will be useful, 
for comparative purposes, to calculate the scattering 

Gaussian, star-branched polymers: variable arm lengths function for the special case of a star whose arms have 
A star-branched polymer is constructed by linking f the Schulz distribution, a form ubiquitous in polymer 
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science6: cascade theory 7 of a most probable distribution, which is 
a special case of a Schulz distribution in which 

. = N  = -  a M ~ / M ~  = 2. 
x(N) = y F(z) e-YN (22) The moments expansion method will now be applied to 

the same problem. Expanding arbitrary arm lengths, {ni}, 
where y and z are related to the mass averages by: about a particular value of n o gives 

y=m(M,-Mn) -x (23a) S(Q,{n,})=S(Q,{no})+ ~, (n , -no (Q,{no}) 

z = (M,/M. - 1)- 1 (23b) i= 1 

i : : 2 ~S and F(z) is the gamma function. Benoit's equation for a +~.~--1 
star with arms {n,}, equation (20), needs to be averaged j=~l (n,-no)(nj-no~)w--7--~(Q,{no})cn,onj 
over the probability distribution for {n~}: 

1 : : : ~3S 
s(e)=fs,Q,f , ,})x(f , , ,})dfni} (24) "~-~" i~=l j~=l k~=l (ni--n°)(nj--n°)(nk--n°) dn,Onjdn: (Q'{n°}) 

+ . . .  (29) 
Since the ann lengths are assumed to be independent 
x({ni}) can be taken as a product of the number 
distribution functions of the arms, which are Schulz S(Q) is the Fourier transform of a pair distribution 
distributions in this example. The result is: function so, for any branched polymer, will be 

constructed from terms containing no more than two arm 
1 dE 2M~ a lengths [c.f. equation (20)]. Thus, all third and higher 
A dr2 ~ {f{ 1 - u -  [ 1 -  (1 + u/z)-Z]} derivatives in which three or more of the arm suffices are 

different must be zero. After the derivatives have been 
evaluated and substituted into equation (29) the answer 

+½f(f-1)u-X[1- (1 +u/z)-~] 2} (25) may be expressed either in terms of the arm molecular 
where masses or those of the star as a whole. The latter is written 

down here, but it is easy to convert to the other form by 
a a ~ s s z= (Mw/Mn- 1 ) - 1 - [ f ( M w / M . -  1)]-1 means of the relationships in the appendix: 

and 

Q2KMSn l dZ 2 (MS0)2 1 V _y ° ~ 1 
u=  fin A d t ~ f  e + Y ° - - l +  (1--e-y°)2 

Equation (25), like Benoit's equation, comprises two +2M~o(l_M~o/M~n)l[l_e-ro+(f_l)e-yo(l_e-ro)] 
terms, the first of which corresponds to intra-arm f Yo 
correlations, and the second term is the contribution from 
inter-arm correlations. For small Q, such that u/z,~ 1, + [fM~w - (f-1).~/P~-2M* o + (M*o)2/NPn] e-y---~° 
equation (25) takes the approximate form: f 

~d-~_M; 1-- mM~w ~- -~-+( -~ j  1 ( 2 6 )  [l-(f-1)(l-e-'°)]+(f-1)(M~-M~)Ze-e'°f M~ 

which is of the correct limiting form if the coefficient of -[f2M~M~w/M~o - 3f(f-1)M~wM~JM~ o + (f-1)(2f-1)(M~n)2/] 
~ 2  is identified with (S2)z: 

- 3f (M~w - M~n) + 3(M~0 - MS,) - (M~o)2/~] y°e- ,o 
3f K(h'P~)2/3f- 2 m M ~ w  \ j-  ~vr~j-M~zM~w ) ($2)~ [~Ty--  + ,~s57~, ~. 1 (27) 

[ 1 - ( f -  1)(1 - e-  '°)] + ~ ( 1  - M~/M~o) 
Equation (27) reduces to the mean square radius of J 

gyration o f a  monodisperse star ifm;=m~,=M~: [fM~w-(f-1)iW.-2M~o+(M~o)Z/M~,]yoe-Zr° (30) 

KM ( 3:- 2 ~ (28) 
(S2(M)) = --m---\---fT-,] where 

Hence, for stars (S2)z ~ (S2(M~)), in contrast to equation Yo = Q2Kno = Q2KNo/f 
(16) for linear molecules, so it is not possible to convert The small Q form of this function is identical with the 
one mass-average, mean square radius of gyration to general formula, equation (26), as expected. 
another by simply multiplying by the ratio of the two As in the case of linear polymers discussed earlier, the 
mass averages, best value for the mass M~o, about which the expansion is 

The scattering function and (S2)z, equations (25) and made, is the one which makes the scattering function for a 
(27), both agree with the treatment by Burchard with monodisperse star, equation (21), of mass/W o most nearly 
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fit the polydisperse scattering function over the Q range of LIMITATIONS OF F O R M U L A E  
the data. Once again, the functions for monodispersity 
and polydispersity coincide in the limits of small and large To illustrate the accuracy of the moments expansion the 
Q. At large Q the asymptotic form is: scattering curves were calculated for a linear polymer 

sample with two specific number distributions: a Schulz, 
1 dE 2m [-1 f ( f - 3 )  m l and a rectangular distribution. Mw and (S2(Mw)) were 
A d f ~ - Q ~  L +2--Q-~ M~] (31) chosen to be the same for both distributions, a n d a s e t o f  

curves was generated with different Mw/M n. Each curve 
was compared with the third order moments expansion 

so equation (21) with s _  s M o - M w  coincides both at Q = 0  formula, equation (18), and with the Debye function. 
and at large Q with the polydisperse scattering function, Figure 1 plots the worst percentage deviation of the 
suggesting this as a good choice for the mass to expand moments expansion and the Debye function from the 
about if data is taken over a wide range of Q. curves for the two number distributions when the 

Gaussian, star-branched polymers: variable number of arms functions are made to coincide at Q = 0  and at large Q. 
The worst deviations from the moments formula are seen 

For  high functionality branched polymers (large f )  the to be much less than from the Debye function, and the 
origin of the polydispersity is liable to change. Rather results are of similar magnitude for both types of 
than arising from the polydispersity of the linear polydispersity. Assuming that the two examples here are 
branches, it is more likely that the variation in the number representative of most realistic number distributions, and 
of branches will contribute most to the overall spread in that scattering experiments typically have Poisson noise 
molecular mass. The scattering function for a sample of one or two per cent, it seems reasonable to apply the 
containing star-branched polymers in which there is a moments expansion formula to samples with Mw/M, up 
distribution of functionalities, but each arm is the same to about 1.3. The error is then no more than the statistical 
length, can be calculated exactly in terms of the mass noise on the data (and considerably better for most of the 
averages. Q range). 

The fraction of molecules having functionality f is xl ,  
and the number of scattering units along each arm is n. 
This time the scattering function is: EXAMPLES 

(i) To illustrate the polydispersity effect in molten 
S" S(Q,nf)x s (32) blends of protonated and deuterated polymers, some S(Q)= 

y= 1 experimental neutron scattering data are presented for 
three-arm polyethylene stars. The protonated and 

where S(Q,nf) is the Benoit formula for a monodisperse deuterated components had the same molecular mass 
star of mass mnf, equation (21). Inspection of equation distribution because they were both obtained by 
(21) reveals that the f dependence in S(Q,nf) takes the saturating a common parent polybutadiene. The spectra 
form of terms linear and quadratic in f,  so that the result were taken on the small-angle facility at NBS, 
of the sum in equation (32) contains only the mass Gaithersburg, with good statistics, and fitted to both the 
averages M~n and M s. The cross-section is: Benoit equation and to the moments expansion formula 

over the whole Q-range of the data. Details of the data 
1 dE 2mn_ 1 ~ analysis and fitting procedure are given elsewhere 1, but 

~ =  ~ [ e - r + y  - l+-~(Mn/nm- 1)(1-e-Y) 2] 

(33) 
+ 1/y 2 (MSw - -  M~,)(1 - e - Y )  2 10 i 

where 

Y=Q 2Kn 8 I 
i 

Unlike the moments expansion formulae, equation (33) 
is exact, and applies to any degree of polydispersity. The o~ 6 ~" 
small Q form is: ~ -~ 

. J  2 

----~-]Ww[1-½OZKn(3-2mn/iWw)] (34) ~ 4 . . . . . .  
A df~ o ~- 

O 

so that the z-average, mean square radius of gyration of ~ 
the sample is: 2 - ~.~; 

(S 2)z = Kn(3 - 2nm/M~w) (35) , /  

0 ~ ~ I I 
The cross-section, equation (33), agrees with a special o i.i t2 i 3 1.4 

case derived by Casassa and Berry 8 in which the number 
of arms attached to the centre followed a binomial M,,/M n 
distribution. Their model is valid if the probability of an Figure l Worst percentage deviations from the exact scattering 
arm being attached to a unit of the centre is independent functions plotted against polydispersity index. Broken curves are fits to 

t h e  D e b y e  f u n c t i o n ,  ful l  c u r v e s  a r e  fi ts  t o  t h e  m o m e n t s  e x p a n s i o n .  
of the number of arms already attached, which is a good Curves labelled 1 are for Sehulz number distributions, curves labelled 2 
assumption for a comb molecule, but not for a star. are for a rectangular number distribution 
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the corrected spectra are displayed in Figure 2 and the hand, produces a radius of gyration which decreases as 
results of the fits are listed in Table I. The values of M~M~ the interval in Q shifts to larger Q. This is a consequence of 
are known on ly  approximately, but variation of + 1% equations (26) and (3 I), which show, respectively, that in 
produces only a small change in the results, and does not the small Q limit it is ($2)~/2 and in the large Q limit, 
affect the general trends. (S2(M~)) 1/2, which are characteristic of the scattering 

Two features of the results are of note. First, the value function. The expected values at these extremes, 
of <S 2) from the Benoit equation fit is initially larger than (s2)lz/2 = 42.06 A [from equation (27)] and 
(S2(Mw)), but becomes smaller as the molecular mass (S2(M~n))I/2=37.65~ [from equation (28)], have been 
increases. Second, the value ofx 2 (the sum of the weighted inserted into Table 2 for comparison. 
square-deviations, per data point) is, in each case, smaller The systematic change in the radius of gyration over 
for the fit to the moments expansion formula than to the different regions of the scattering curve is in the same 
Benoit equation, sense as that observed in the experimental data. Whilst 

(ii) To help interpret the radius of gyration behaviour the possibility that the polymers may not be Gaussian 
observed in the data fitting above, and to further illustrate cannot be ruled out entirely, the trends in radius of 
the effects of a small polydispersity, a numerical experi- 
ment was performed. Some test data were generated 
for a four-arm star whose arms had a Schulz number 

a a _  s s distribution with M,/M,-1 .2 ,  i.e. Mw/M,= 1.05. The I.e i A b i 
sample was chosen to have M~, = 50 000 and K/m = 0.05, ~ B 
SO that (S2(M~w))l/2= 39:53 A. The data are generated as i. o -%0o " 
100 points in the range 0.0 ~< Q ~< 0.2 A-1 and fitted in the % 
very small and very large Q limits to the Benoit formula % 
and also to the equivalent moments expansion, equation o. 8 % 
(30), expanded about M~,. % 

o 
The curve is displayed in Figure 3 and the results of the ~ o 

fits are listed in Table 2. Clearly, the moments expansion _ 0.6 % 
formula, which is exact in the limits of small and large Q, % % 
is able to give results consistently close to the correct 0.4 % 
value of ( S 2 ( M S w ) )  1/2. The Benoit equation, on the other % Q 

1 . 0  - -  I I I I I I I 

%~ o I I 
ja~o ~ 0.05 O. I0 0.15 0.20 

0.8 o ,~o _ Q(/~-r) 

o ' ~  Figure 3 Theoretical scattering function for the four-arm star of 
o ~ %  example (ii). The arms have a Schulz number distribution with 

O. 6 % + ~ + _ M a / M  a = 1.2. The three fitting intervals are indicated by the letters A, B, 
o %o~ C 
o v c~ ~ 

o ~ o ~ _ Table 2 Effective radii of gyration obtained by fitting the Benoit 
O. 4 o ~ % ~ equation and the moments expansion formula to the polydisperse four- 

% % ~ ~ arm star test data of example (ii) 

" ~ _ Fit to moments 
0.2 " ~  ~ ~  ~ Fit to Benoit equation expansion 

~ = o Q range of fit 
~ ~ ~  ( h  - 1 )  <S2> 1/2 (A) I(Q=O) ($2> 1]2 (A) I(Q=O) 

0 I I I I I v  
0.02 0.04 0.06 0.06 0.10 0.12 0.14 0.16 lim AQ as Q~O 42.06 1.050 39.53 1.050 

O (~-I) A 0.00--*0.01 41.98 1.050 39.52 1.050 
B 0.01~0.10 40.24 1.035 39.63 1.052 

Figure 2 Neutron scattering spectra of the four three-arm star C 0.18--.0.20 38.68 1.005 39.63 1.056 
polymers used in example (i), normalized to unity at Q=0.  The limAQ as Q---*~ 37.65 1.000 39.53 1.050 
molecular masses are: 5700 (A); 7000 (~) ;  9200 (V); 41 000 (O) 

Table 1 Neutron scattering data for four samples of molten three-arm star polymers. The spectra were converted to absolute intensity and fitted to the 
Benoit equation and to the moments expansion formula 

Fit to Benoit equation Fit to moments expansion 

M s M s M s d]~ 1 dE 
- -  ~ (o)  (cm-) z2 ~(o)  (cm -x) x2 103 M s M s (S2 )  1/2 (A) (S2 )  1/2 (A) 

5.7 1.03 1.03 31.4 1.57 0.835 31.1 1.59 0.787 
7.0 1.05 1.05 34.8 1.50 0.689 34.6 1.53 0.677 
9.2 1.02 1.02 40.7 2.58 1.23 40.7 2.61 1.06 

41.0 1.05 1.04 79.9 13.0 0.738 80.9 13.6 0.702 
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gyration combined with the smaller Z 2 for the moments 4 Debye, P. J. Phys. Colloid Chem. 1947, 51, 18 
expansion fit suggest that it is the effects of polydispersity 5 Benoit, H. J. Polym. Sci. 1953, 11,507 
which are being observed. 6 Berry, G. C. in 'Encyclopedia of Materials Science and Engineering' 

(Ed. M. B. Bever) Pergamon, 1986, Voi. 15, pp. 3759-3767 
7 Burchard, W. Macromolecules 1977, 10, 919 

DISCUSSION 8 Casassa, E. F. and Berry, G. C. J. Polym. Sci. (A-2) 1966, 4, 881 

The aim of the work described in this paper was to APPENDIX 
reexamine the problem of polydispersity from a different 
starting point, namely one in which the only knowledge of Relationships between the mass averages for a star and its 
the molecular mass distribution is contained within the arms 
first few mass averages. This has been achieved by writing The correct relationships can be derived by recalling a 
the scattering function as a series expansion in the property of the moments of convoluted distributions. If 
moments of the molecular mass distribution, and the 
main results presented here are the approximate formulae Y(y) = X 1 ( x  I ) * X z ( x 2 ) *  . . . *Xf(xf)  
for Gaussian linear and star polymers, equations (14) and 
(30). then the rth moment of Y is: 

A prerequisite for the moments method is that the 
scatteringfunctionsfordifferentmassescombinelinearly.  - f f f ( y _  i~= l ) 
This has been shown to be the case for blends of molten yr = dy y '  dXl . . .  dx:Xl(x l ) . . .  X:(x:)~ xi 
polymers providing the mass distributions of the labelled 
and unlabelled components are the same. Scattering from f fd 
very dilute solutions also satisfies the linear combination = dx I . . .  x: xi X~(Xl) . . .X:(x : )  
condition, i 

The formulae are intended to be used in conjunction ~=l f f i i + ~ f  f f ( r ~ l  ~!(r-~) ! ~ r !  - - - - )  
with a theoretical calculation of S(Q,N). Polydispersity is = - -  -~ 
introduced through the moments expansion of S(Q,N), = i> j \¢t= 1 
and a direct fit to the experimental data then provides a f f f l / r -2r -~  -1 r! ) 
test of the proposed model. The form of the moments + E  E E [  E ~!fl!(r-ct-fl)f~ x~ ~-~-#  + . .  
expansion is computationally simple; it contains no ~>j> k \~t=l fl=l 
integrals, and is differentiable for use in standard fitting 
routines. Putting Xi(xi) equal to the number distribution for each 

The approximate formulae are necessarily restricted to arm, the first three moments of the star are: 
cases where the molecular mass distribution is relatively 
narrow, typically M,/M,  < 1.3. However, the experimen- ~7 = fh  
tal data presented here shows that polydispersity may still 
be evident even with a very monodisperse sample. N 2 = f n 2 + f ( f - 1 ) h  2 
Furthermore,  it is only with such well-characterized 
samples that detailed experiments can be performed to N 3 =  fn3+ 3f( f -1)n2h + f ( f - 1 ) ( f - 2 ) n  3 
test our understanding of chain conformation, and it is for 
application in these sorts of studies that the work is From these, the molecular mass averages of the star in 
intended. Synthetic chemists are now able to produce terms of the arms are then: 
samples of such quality, and to achieve the most accurate 
experimental results there will be an increasing demand M s = f M  a 
for careful data analysis to correct for any non-idealities. 

M~w = M~, + ( f -  1)M a (A1) 
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